SINTONIZACIÓN DE UN CONTROLADOR PI APLICADO A UN HORNO EXPERIMENTAL A PARTIR DE LA IDENTIFICACIÓN DE MÚLTIPLES PUNTOS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO UN ALGORITMO GENÉTICO

Cecilia de los A. Keb Chulin, César I. Coyoc y Coyoc, J. Rubén Lagunas Jiménez, Víctor M. Moo Yam

Resumen


Resumen

En este trabajo se presenta una propuesta de sintonización de controladores PI a partir de la identificación de múltiples puntos de la respuesta en frecuencia de un sistema experimental. Los puntos identificados, los cuales se obtienen mediante el método basado en una prueba de escalón en lazo abierto, se utilizan para el diseño de controladores PI, y para modelar sistemas lineales mediante función de transferencia, proponiendo la estructura de un sistema de primer orden más un retardo. Ambos problemas son planteados como un problema de optimización no lineal de mínimos cuadrados sin restricciones. El problema de optimización se resuelve mediante un algoritmo genético simple.

Palabras claves: Algoritmo genético, controlador PI, optimización.

 

TUNING OF A PI CONTROLLER APPLIED TO AN EXPERIMENTAL FURNACE FROM THE IDENTIFICATION OF MULTIPLE POINTS OF THE FREQUENCY RESPONSE USING A GENETIC ALGORITHM

Abstract

This work presents a proposal for tuning PI controllers from the identification of multiple points of the frequency response taking into account an experimental system. The identified points, which are obtained by means of an open-loop step test, are used for the PI controllers design, and for modeling linear systems by transfer function, proposing the structure of a first-order system plus delay. Both problems are stated as a nonlinear least squares unconstrained optimization problem. The optimization problem is solved with a simple genetic algorithm.

Keywords: Genetic algorithm, optimization, PI controller.


Texto completo:

864-877 PDF

Referencias


Âström, K., & Hägglund, T., PID Controllers:Theory, Design and Tuning. North Carolina: Instrument Society of America, 1995

Gavin, H., The Levenberg-Marquardt, Method for nonlinear least squares curve-fitting problems. Departament of Civil and Enviromental Engineering Duke University, 2013.

Griva, I., Nash, S., & Ariela, S., Linear and Nonlinear Optimization. Society for Industrial Mathematics, 2009.

Holland, J., Adaptation in Natural and Artificial Systems. Michigan: University of Michigan Press, 1975.

Jamshidi, M., Coelho, L., Santos, D., Krohling, R.A, & Fleming, P., Robust Control Systems With Genetic Algorithms. CRC Press LLC, 2003.

Kristiansson, B., & Lennartson, B., Robust tunnig of PI and PID Controllers. IEEE Control Systems Magazine, 55-69, 2006.

Liu, T., & Gao, F., A frequency domain step identification method for continuous-time. Journal of Process Control, 800-809, 2010.

Liu, T., & Shao, C., Closed-loop step identification of low-order continuos-time process model with time delay for enhanced controller autotuning. Int. J. Systems, Control and Communications, 225-249, 2012.

Liu, T., Wang, Q., & Huang, H., A tutorial review on process identification from step or relay feedback test. Journal of Process Control, 1597-1623, 2013.

Matusu, R., Computation of Stability Regions for PID Controllers. WSEAS, 210- 213, 2011.

Padhy, P., & Majhi, S., Relay based PI_PID design for stable and unstable FOPDT processes. Computer & Chemical Engineering, 790-796, 2006.

Shin, G., Song, Y., Lee, T., & Choi, H., Genetic Algorithm for Identification of Time Delay Systems from Step Responses. International Journal of Control| Automation and Systems, 79-85, 2007.

Transtrum, B., & Sethna, J., Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. Journal of Computational Physics, 2012.

Wang, Q., Process Frequency Response Estimation from Relay Feedback. Control Eng. Practice, 1293-1302, 1997.

Wang, Q., & Y., Z., Robust identification of continuos systems with dead time from step responses. Automatica, 377-390, 2001.


Enlaces refback

  • No hay ningún enlace refback.