IMPLANTACIÓN DE UNA LPWAN PARA MONITOREO DE TEMPERATURA Y HUMEDAD EN UN INVERNADERO

José Ignacio Vega Luna, Mario Alberto Lagos Acosta, Gerardo Salgado Guzmán, Víctor Noé Tapia Vargas, Francisco Javier Sánchez Rangel, José Francisco Cosme Aceves

Resumen


Resumen

Se presenta la implantación de una LPWAN conectada a la Internet para monitoreo de temperatura y humedad de un invernadero. La LPWAN está formada por cinco nodos distribuidos en el invernadero y un gateway conectado a la Internet. Es una solución de IoT, donde cada nodo consta de un microcontrolador, un sensor de temperatura ambiente y humedad relativa y un transceptor de radio LoRa. Periódicamente los nodos envían la información recabada por los sensores al gateway y éste a su vez la transmite a un servidor ubicado en la nube. Operando una interfaz de usuario, se puede acceder al servidor y monitorear los valores de temperatura y humedad enviados por los nodos. La interfaz de usuario puede acceder información de diferentes invernaderos en los que exista una LPWAN como la diseñada en este trabajo. El alcance de la LPWAN fue de 12.5 Kilómetros con línea de vista.

Palabras Claves: Gateway, IoT, LoRa, LPWAN, sensor de temperatura.

 

IMPLEMENTATION OF A LPWAN FOR TEMPERATURE AND MOISTURE MONITORING IN A GREENHOUSE

Abstract

This paper presents the implementation of a LPWAN connected to the Internet to monitor the temperature and humidity of a greenhouse. The LPWAN consists of five nodes distributed in the greenhouse and a gateway connected to the Internet. It is an IoT solution, where each node consists of a microcontroller, an ambient temperature and relative humidity sensor and a LoRa radio transceiver. Periodically the nodes send the information collected by the sensors to the gateway and this in turn transmits it to a server located in the cloud. By operating a user interface, you can access the server and monitor the temperature and humidity values sent by the nodes. The user interface can access information from different greenhouses in which there is an LPWAN as the one designed in this work. The scope of the LPWAN was 12.5 Kilometers with line of sight.

Keywords: Gateway, IoT, LoRa, LPWAN, temperature sensor, transceiver.


Texto completo:

1531-1548 PDF

Referencias


Abutalipov, R. N., Bolgov, Y.V. & Senov, H. M. Flowering plants pollination robotic system for greenhouses by means of nano copter (drone aircraft). IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS) Proceedings. Nalchik, Russia, October 2016.

Athukorala, S., Weeraratne, S. & Jayathilaka, D. Affordable real-time environment monitoring system for greenhouses. Manufacturing & Industrial Engineering Symposium (MIES) Proceedings. Colombo, Sri Lanka, October 2016.

Dayioglu, M. A. Development of real-time wireless monitoring system for greenhouses: Industrial Bluetooth application. 22nd Signal Processing and Communications Applications Conference (SIU) Proceedings. Trabzon, Turkey, April 2014.

Durmus, H., Günes, E. O. & Kirci, M. Data acquisition from greenhouses by using autonomous mobile robot. Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) Proceedings. Tianjin, China, July 2016.

Mavropoulos, O., Mouratidis, H. & Fish, A. ASTo: A tool for security analysis of IoT systems. IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA) Proceedings. London, UK, June 2017.

Ismail, M. T., Ismail, M. N. & Sameon, S. S. Wireless Sensor Network: Smart greenhouse prototype with smart design. 2nd International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR) Proceedings. Bangi, Malaysia, Agosto 2016.

Cambra, C., Sendra, S. & Lloret, J. An IoT service-oriented system for agriculture monitoring. IEEE International Conference on Communications (ICC) Proceedings. Paris, France. May 2017.

Bardyn, J. P., Melly, T. & Seller, O. IoT: The era of LPWAN is starting now. ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference Proceedings. Lausanne, Switzerland, September 2016.

Hanggoro, A., Putra, M. A. & Reynaldo, R. Greenhouse monitoring and controlling using Android mobile application. International Conference on QiR (Quality in Research) Proceedings. Yogyakarta, Indonesia, June 2013.

Leong, K. S., Chze, P. L. & Wee, A. K. A multi-factors security key generation mechanism for IoT. Ninth International Conference on Ubiquitous and Future Networks (ICUFN) Proceedings. Milan, Italy, July 2017.

Li, Y. W. & Pang, Y. Based on the ZigBee greenhouse grey trend prediction control. International Conference on Machine Learning and Cybernetics (ICMLC) Proceedings. Jeju, South Korea, July 2016.

Luo, Q., Qin, L. & Li, X. The implementation of wireless sensor and control system in greenhouse based on ZigBee. 35th Chinese Control Conference (CCC) Proceedings. Chengdu, China, July 2016.

Papadopoulos, G. Z., Matsui, T., Thubert, P. & Texier, G. Leapfrog collaboration: Toward determinism and predictability in industrial-IoT applications. IEEE International Conference on Communications (ICC) Proceedings. Paris, France, May 2017.

Tian, Y. W., Zheng, P.H. & Shi, R. Y. The Detection System for Greenhouse Tomato Disease Degree Based on Android Platform. 3rd International Conference on Information Science and Control Engineering (ICISCE) Proceedings. Beijing, China, July 2016.

Yamakami, T. A dimensional framework to evaluate coverage of IoT services in city platform as a service. International Conference on Service Systems and Service Management Proceedings. Dalian, China, June 2017.


Enlaces refback

  • No hay ningún enlace refback.