Felipe de Jesús Becerra Woo, Araceli Gárate García, Tania Aglaé Ramírez del Real, Ervin Jesús Alvarez Sánchez



En este trabajo se presenta un sistema de adquisición de datos desarrollado para un invernadero clásico cenital que se basa en el microcontrolador ESP826612E y la computadora de bolsillo Raspberry Pi 3, los cuales son plataformas de hardware libre. Los parámetros obtenidos son la temperatura y la humedad. En el método se incluye la integración de los componentes al sistema de adquisición de datos, en particular el sensor de temperatura y humedad (DHT11), el servidor (Mosquitto y Node-RED), utilizando los protocolos de comunicación inalámbrica (WiFi y MQTT). Los resultados muestran la factibilidad para utilizar un conjunto de dispositivos inalámbricos para la integración de un sistema donde se requiere procesar información de manera remota, en este caso un invernadero.

Palabras Claves: Adquisición de datos, invernadero, mosquitto, Node-RED, Raspberry Pi.




A data acquisition system for a classical zenith greenhouse is developed in this paper. It is based on the ESP826612E microcontroller and the Raspberry Pi 3, which are open source hardware. The humidity and temperature are the parameters to acquire. The methodology includes the integration of some key components, such as the DHT11 sensor, the Mosquitto and Node-RED server, using the wireless communication protocols (WiFi and MQTT). The results show the possibility to use a set of wireless devices in order to process the information in a remote connection, in this case a greenhouse.

Keywords: Data acquisition, greenhouse, mosquitto, Node-RED, Raspberry Pi.

Texto completo:

207-218 PDF


AOSONG. Especificaciones del módulo DHT11: /download/ds/aosong/DHT11.pdf, 2017.

Blackstock M. & Lea R. Toward a Distributed Data Flow Platform for the Web of Things. Proceedings of the 5th International Workshop on Web of Things, October 2014.

Chang, C.L., Chang, K.P., & Song, G.B. Design and Implementation of a Cloud-Based LED Lighting Control System for Protected Horticulture. Applied Engineering in Agriculture, 32(6), pp. 697-706, 2016.

Cossu, M., Murgia, L., Ledda, L., Deligios, P.A., Sirigu, A., Chessa, F., & Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Applied Energy, 133, pp. 89–100, 2014.

DC-Square, HiveMQ, 2016: el 2 de abril de 2016.

Du Y., Xue Z., Zhu Q., Liu X., Feng Y., and Zhang S. Design and Application of Intelligent Control System for Greenhouse Environment Based on CAN bus. Proceedings of International Conference on Modeling, Identification & Control, 2013.

Fang, J., & Wang, F. Design of greenhouse remote monitoring system based on LabVIEW. Computer Science and Automation Engineering, pp. 536-539, 2011.

Ferrarezi, R.S., Dove, S.K., & Van Lersel, M.W. An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. HortTechnology, 25(1), pp. 110-118, 2015.

De Anda, J. & Shear, H. Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1), pp. 140, 2017.

Espressif Systems, Especificaciones ESP-12E, 2017: http://d1jy6p8pks3hof, 2017.

Fezari M., Khati A. and Boumaza M.S. Implementation of Wireles Sensor Network for Automatic Greenhouse Monitorign. Communications, Computing and Control Applications, 2011.

Guofang, L., Lidong, C., Yubin, Q., Shengtao, L., & Junyu, X. Remote Monitoring System of Greenhouse Environment Based on LabVIEW. International Conference on Computer Design and Applications, Vol. 2, 2010.

Juárez-Gutiérrez, S.S., Gárate-García, A., Ramírez del-Real, T. A., & Álvarez-Sánchez, E.J. Temperature Modeling of a Greenhouse Environment, Handbook of Research on Military, Aeronautical, and Maritime Logistics and Operations, IGI Global, pp. 257, 2016.

Márquez-Vera, M.A., Ramos-Fernández, J.C., Cerecero-Natale, L.F., Lafont, F., Balmat, J.F. & Esparza-Villanueva, J.I. Temperature control in a MISO greenhouse by inverting its fuzzy model. Computers and Electronics in Agriculture, 124, pp. 168–174, 2016.

Khot, S.B., & Gaikwad, M.S. Development of cloud-based Light intensity monitoring system for greenhouse using Raspberry Pi. International Conference on Computing Communication Control and automation, pp. 1-4, 2016.

Makhlouf, S., Laghrouche, M. & Adane, A.E.H. Hot Wire Sensor-Based Data Acquisition System for Controlling the Laminar Boundary Layer Near Plant Leaves Within a Greenhouse. IEEE Sensors Journal, 16(8), pp. 2650-2657, 2016.

Mad S. S., Munirah L., Kamarudin K., Mohd W., Syed M. M., Muhammad S., Zakaria A. and Nor M. Real-Time Greenhouse Monitoring System for Mango with Wireless Sensor Network. International Conference on Electronic Design, 2014.

Ramirez-Villegas, J., Jarvis, A. & Läderach, P. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology, 170, pp. 67-78, 2013.

Outanoute, M., Lachhab, A., Ed-dahhak, A., Guerbaoui, M., Selmani, A. & Bouchikhi, B. Synthesis of an Optimal Dynamic Regulator Based on Linear Quadratic Gaussian (LQG) for the Control of the Relative Humidity Under Experimental Greenhouse. International Journal of Electrical and Computer Engineering, 6(5), pp. 2262-2273, 2016.

Kang, Y., Khan, S. & Ma, X. Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19 (12), pp. 1665-1674, 2009.

Enlaces refback

  • No hay ningún enlace refback.