CÁLCULO DE LA RIGIDEZ DE UN ROBOT INDUSTRIAL DE SEIS GRADOS DE LIBERTAD

Pablo Rodríguez, Eduardo Esquivel, Giuseppe Carbone, Marco Ceccarelli, Juan C Jáuregui

Resumen


Resumen

Como parte de una investigación para producir un sistema de compensación on-line para el proceso de Roll Hemming, proponemos un método para calcular la matriz de rigidez de las juntas de un robot industrial de seis grados de libertad. Este análisis fue hecho aplicando solo una fuerza sobre la el punto central de la herramienta, esta fuerza solo actuaba en la dirección Z del marco de referencia. El experimento puede ser mejorado sin embargo los resultados pueden ser utilizados como referencia para experimentos relacionados con robots industriales.

Palabra(s) Clave: Rigidez, Robot Industrial, Roll Hemming.

 

CALCULATION OF THE RIGIDITY OF AN INDUSTRIAL ROBOT OF SIX DEGREES OF FREEDOM

 

Abstract

As part of a research to produce an on-line compensation system for Roll Hemming process, we propose a method to calculate the joint stiffness matrix of an industrial robot of six degrees of freedom. This analysis was done applying only one force over the tool center point, this force only acted in the Z world frame reference direction. The experiment can be improved nevertheless the values can be used as reference for experiments related with industrial robots.

Keywords: Industrial robot, Roll Hemming, Stiffness.


Texto completo:

470-483 PDF

Referencias


E. Abele, M. Weigold, and S. Rothenbücher. Modeling and identification of an industrial robot for machining applications. CIRP Annals - Manufacturing Technology, 56(1):387–390, 2007.

E. Abele, J. Bauer, C. Bertsch, R. Laurischkat, H. Meier, S. Reese, M. Stelzer, and O. Von Stryk. Comparison of Implementations of a Flexible Joint Multibody Dynamics System Model for an Industrial Robot. 6th CIRP International Conference on Intelligent Computation in Manufacturing Engineering, pages 23–25, 2008.

N. Le Maoût, S. Thuillier, and P. Y. Manach. Classical and Roll-hemming Processesof Pre-strained Metallic Sheets. Experimental Mechanics, 50(7):1087–1097, 2010.

Roll Karl Eisele Urs and Mathias Liewald. Development of an empirical model to determine results from FEA roller hemming processes. LS-Dyna Forum, Metallumformung I, pages 1–14, 2010.

Welf-Guntram Drossel, Marko Pfeifer, Mathias Findeisen, Markus Rössinger, Alexander Eckert, and Daniel Barth. The influence of the robot’s stiffness on roller hemming processes. Isr Robotik, pages 531–538, 2014.

John J. Craig. Introduction to Robotics: Mechanics and Control 3rd. Prentice Hall, 1(3):408, 2004.

Claire Dumas, Stéphane Caro, Sébastien Garnier, and Benoît Furet. Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, 27(4):881–888, 2011.

J. Belchior, M. Guillo, E. Courteille, P. Maurine, L. Leotoing, and D. Guines. Offline compensation of the tool path deviations on robotic machining: Application to incremental sheet forming. Robotics and Computer-Integrated Manufacturing, 29(4):58–69, 2013.

C. Kohrt, R. Stamp, A. G. Pipe, J. Kiely, and G. Schiedermeier. An online robot trajectory planning and programming support system for industrial use. Robotics and Computer-Integrated Manufacturing, 29(1):71–79, 2013.

Mario Guillo and Laurent Dubourg. Impact & improvement of tool deviation in friction stir welding: Weld quality & real-time compensation on an industrial robot. Robotics and Computer-Integrated Manufacturing, 39:22–31, 2016.


Enlaces refback

  • No hay ningún enlace refback.




URL de la licencia: https://creativecommons.org/licenses/by/3.0/deed.es

Licencia Creative Commons    Esta revista está bajo una Licencia Creative Commons Atribución 3.0 No portada.